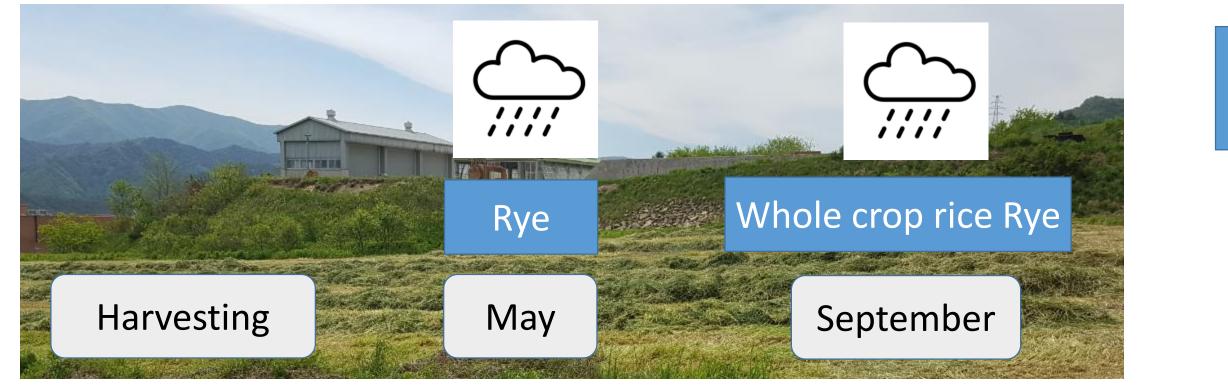
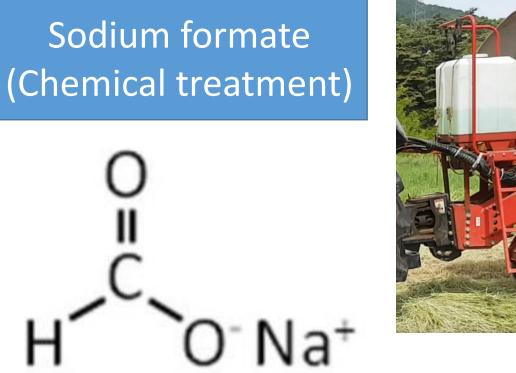
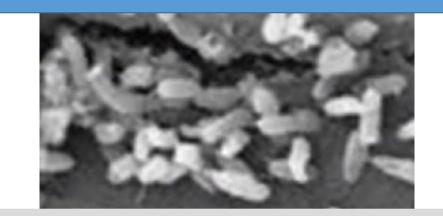
Effect of sodium formate and lactic acid bacteria inoculant on silage and ruminal fermentation characteristics and energy balance of cattle Geumhwi Bang^{1,2}, Jayeon Kim³, Bharanidharan Rajaraman⁴, Tae Hoon Kim³, Soon Woo Jeong⁵, Seol Hwa Park⁶, Kyoung Hoon Kim^{2,3}


¹Department of Animal Science and Technology, KKU, Seoul; ²Institute of Green Bio Science & Technology, SNU, Korea; ³Graduate School of International Agriculture Technology, SNU, Korea; ⁴College of Agriculture and Life Science, SNU; ⁵Cheonan City Agriculture Technology Center, Cheonan, Korea; ⁶Animal Nutritional & Physiology TEAM, NIAS, Korea


(E-mail: khhkim@snu.ac.kr)


Seoul National University

Background

Lactic acid bacteria inoculant (Biological treatment)

Depending on live microbes

Materials and Methods

- > Rye was harvested before flowering stage and six baled silages were produced for each treatment - without additive (control), with either LAB inoculant or Na-FA.
- > Silage fermentation quality evaluation
 - 4 bale silages were selected from each treatment after 8 weeks of fermentation and a total of 9 core samples obtained from each bale silage using a sampler.
- > Feeding trial
 - Hanwoo steers group 1 (average body weight 275 ± 8.4 kg, n= 3) and group 2 d (average body weight 360 ± 32.1 kg, n=3) were used in a replicated 3×3 Latin square design.
 - Steers fed 2.7% of fresh silage and 0.2% of concentrate, as a fed basis, based on average live body weight in the morning (09:00) and evening (06:00), respectively.

Energy balances for steers fed three different silages were measured using three indirect open circuit respiratory chambers.

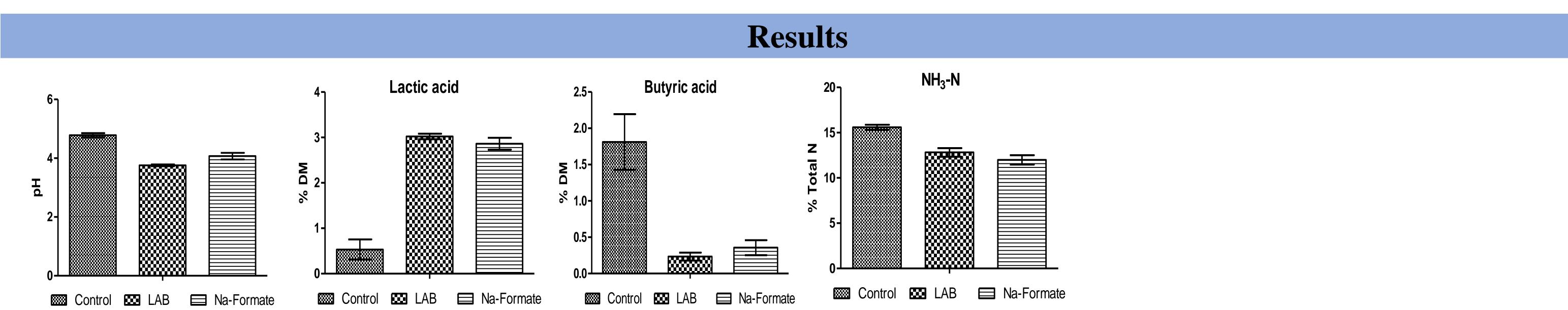
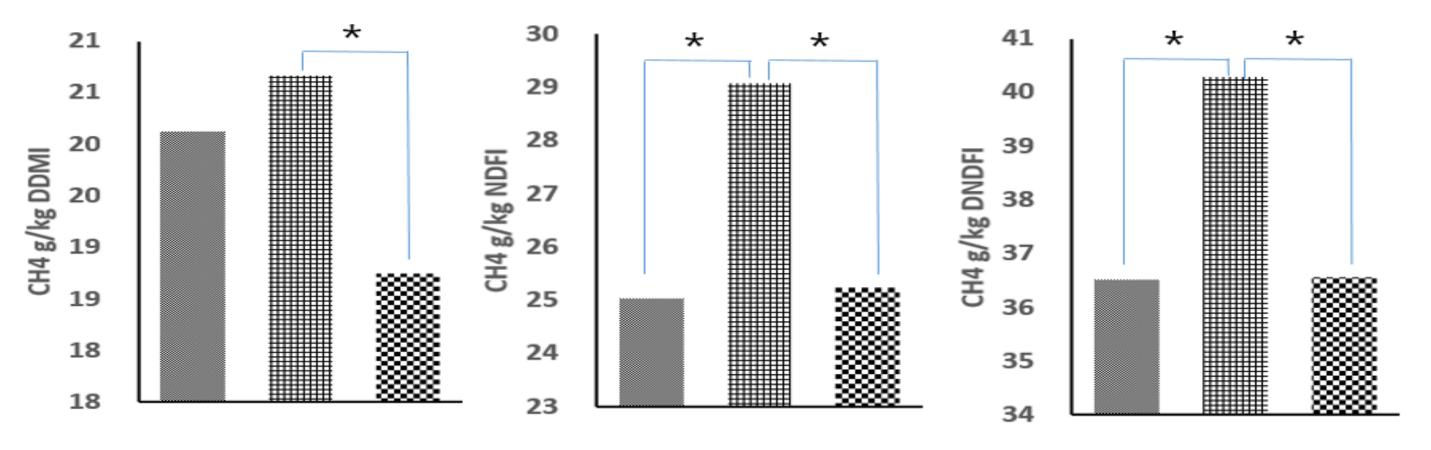



Figure 1. Fermentation characteristic of each treatment Rye silage

Item	Control	LAB	Na-FA	SEM	p value
Gross energy (GE) intake, Mcal/d	20.3	20.4	20.82	0.33	<.0001
Energy loss, Mcal/d					
Feces	6.16	5.36	5.89	0.37	0.183
Urine	2.28	2.79	2.55	0.26	0.386
Methane	1.50	1.57	1.60	0.15	0.650
Heat	8.62	9.29	7.99	0.44	0.045
Digestible energy (DE), Mcal/d	14.1	15.0	14.9	0.67	0.083
Metabolisable energy (ME), Mcal/d	10.3	10.7	10.8	0.57	0.267
Net energy (NE), Mcal/d	2.80	5.79	2.79	0.56	0.010
Feces, % GE	30.7	26.4	28.3	2.73	0.387
Urine, % GE	11.2	13.8	12.3	1.91	0.363
Methane, % GE	7.42	7.69	7.71	1.07	0.992
Heat, % GE	42.4	45.4	38.4	2.07	0.049
Proportion, % GE					
DE	69.3	73.6	71.7	2.56	0.387
ME	50.7	52.2	51.6	0.21	3.583
NE	13.6	6.72	13.3	0.32	0.009

Figure 2. CH_4 production from enteric fermentation

Table 1. Energy balance for steers fed each treatment Rye silage

Conclusion

LAB and Na-FA silages showed significantly higher values (P < 0.05) of propionate concentration when compared to the control. There were no differences in nutrient total tract digestibility between Na-FA and LAB silages but Na-FA silage showed lower trend of CH_4 yield (g/kg NDF intake) and significantly (P<0.01) higher net energy balance. This is the first study in Korea suggesting the potential benefits of Na-FA as a silage additive compatible with the LAB inoculant, especially in temperate zone of Asia where silages have prepared often from moderately poor material because forages are harvested in rainy season.

Graduate School of International Agricultural Technology